	Term 1		Term 2		Term 3	
Content title Pure Statistics Mechanics	P1. Algebraic expressions (7 hrs) P2. Quadratics (7 hrs) P3. Equations and Inequalities (8 hrs) P4. Graphs and transformations (8 hrs) S\&M1. Data collection (6 hrs) S\&M2. Measures of location and spread (6 hrs) S\&M3. Representations of data (6 hrs)	P5. Straight line graphs (6 hrs) P6. Circles (6 hrs) S\&M4. Correlation (3 hrs) S\&M5. Probability (5 hrs) S\&M6. Statistical distributions (4 hrs)	P7. Algebraic methods (6 hrs) P8. Binomial expansion (6 hrs) P9. Trig ratios (7 hrs) P10. Trig identities and equations (7 hrs) S\&M7. Hypothesis testing (5 hrs) S\&M8: Modelling in mechanics (5 hrs)	P11. Vectors (7 hrs) P12. Differentiation (12 hrs) S\&M 9. Constant acceleration (4 hrs) S\&M 10. Forces and motion (7 hrs)	P13. Integration (8 hrs) P14. Exponentials and logs (9 hrs) S\&M 11. Variable acceleration (6 hrs)	Revision for mock Start year 2 work P1. Algebraic methods (6 hrs) P2. Functions and graphs (8 hrs) S\&M2. Conditional probability (6 hrs)
Purpose of the scheme	The mathematics curriculum at Immanuel College is designed to ensure that all students have a secure knowledge base and cultivate a deep understanding of mathematical concepts and procedures, as well as the ability to apply these to a variety of problems, including those they may face in the real world.					
Pre-read (suggested)	Simplifying expressions, index laws expanding brackets, HCF, solving equations. Sketching graphs, solving inequality, factorising, Venn diagrams, Simultaneous equations, Surds, quadratic graphs, MMMR, questionnaires, types of data, bar charts, pie charts, IQR, Mean and standard deviation.	Points of intersection, rearranging equation, surds, completing the square, equation of a straight line, discriminant, Scatter graphs, probability, outcomes	Indices, factorising, long division, equations of lines, expanding brackets indices, SOHCAHTOA, solving equations, completing the square, sketching graphs Probability Converting units Standard form	Translations, ratios, sine and cosine rules, gradients of straight lines, indices, equations of straight lines, equations of perpendiculars. Gradient and area under a graph, speed calculations, solving simultaneous equations. Vectors, Pythagoras, sohcahtoa, constant acceleration	Indices, differentiation, sketching curves, substitution, scatter graphs. Differentiation, turning points, area under curves	Factorising polynomials, simplifying algebraic fractions, recognising odd and even expressions, changing the subject of a formula, simplifying expressions, sketching graphs, substitution Logs, regression equations, - hypothesis testing
Key knowledge and skills	- Expanding brackets - Factorising - indices - Surds - Quadratic equations - Functions - Quadratic graphs - Modelling with quadratic - Simultaneous equations - Inequalities - Graphs of cubic, reciprocal, quartic - Points of intersection - Transforming graphs - Populations and samples	- Equations of straight lines - Parallel and perpendicular lines - Length and area - Modelling with straight lines - Midpoints and perpendicular bisector - Equation of a circle - Intersection of straight lines and circles - Tangent and chord. - Circles and triangles - Correlation - Linear regression	- Algebraic fractions - Dividing polynomials - Factor theorem - Proof - Pascal's triangle - Factorial notation - Binomial expansion - Binomial problems - Binomial estimation - Cosine rule - Sine rule - Area of triangle - Trig graphs - Transforming trig graphs - Find more than one solution to trig graphs	- Representing vectors - Magnitude - Direction - Position vectors - Solving geometric problems - Modelling of vectors - Gradients of curves - Finding the derivative - Differentiating functions - Gradients, tangents and normal - Increasing and decreasing functions - Second order derivatives - Stationary points - Sketching gradient functions	- Integrating - Indefinite integrals - Finding functions - Definite integrals - Areas under curves - Area under the x axis - Area under curves and lines - Exponential functions - Exponential modelling - Logs - Laws of logs - Solving equations using logs - Natural logs - Logs and non-linear data - Functions of times	- Proof by contradiction - Algebraic fraction - Partial fractions - Repeated factors - Algebraic division - Modulus function - Function and mapping - Composite functions - Inverse functions - Modulus functions and graphs - Combining transformations and graphs - Solving modulus problems - Set notation - Conditional probability

"Perseverance produces character, and character, hope" (Romans 5:4)

	- Types of data - Large data set - Measures of spread - Variance and standard deviation - Coding - Outliers - Box plots - Cumulative frequency - Histograms - Comparing data	- Probability - Venn diagrams - Mutually exclusive and independent events - Tree diagrams - Probability distributions - Binomial distribution - Cumulative probability	- Exact trig values - Trig identities - Trig equations - Hypothesis testing - Finding critical values - One tail test - Two tail tests - Constructing models - Modelling assumptions - Quantities and units - Working with vectors	- Modelling with differentiation - Displacement/time graphs - Velocity times graphs - Constant acceleration formulae - Vertical motion under gravity - Force diagrams - Forces as vectors - Forces and acceleration - Motion in 2 dimensions - Connected partials - Pulleys.	- Using differentiation - Max/min problems - Using integration - Constant acceleration formulae	- Venn diagrams - Probability formulae - Tree diagrams
Key words / vocabulary	See above					
Exam board	Edexcel					
End point	Confidence in chapters covered					
Assessment method	Topic Assessments Homework Induction assessment Assessment point 1	Topic Assessments Homework	Topic Assessments Homework	Topic Assessments Homework Assessment point 2	Topic Assessments Homework	Topic Assessments Homework End of year assessment
Wider links	Introduction to Mathematical Philosophy by Bertrand Russell A Mathematician's Apology by G. H. Hardy Thinking About Mathematics by Stewart Shapiro	Fermat's Last Theorem by Simon Singh The Millenium Problems by Keith Devlin Journey Through Genius: The Great Theorems of Mathematics by William Dunham The Equation That Couldn't Be Solved by Mario Livio	Kepler's Conjecture by George Szpiro Poincaré's Prize by George Szpiro The Music of the Primes by Marcus du Sautoy Four Colors Suffice by Robin Wilson	Concepts in Modern Mathematics by lan Stewart Geometry for Dummies by Mark Ryan Concise Introduction to Pure Mathematics by Martin Liebeck Mathematical Methods for Science Students by G Stephenson	The Emperor's New Mind by Roger Penrose The Mathematical Universe by William Dunham The Wonders of Numbers by Clifford Pickover From Here to Infinity by lan Stewart The Art of the Infinite: Our Lost Language of Numbers by Robert Kaplan	The Number Devil: A Mathematical Adventure by Hans Magnus Enzensberger Art of the Infinite by Kaplan Imagining Numbers: Particularly the Square Root of Minus Fifteen by Barry Mazur A Very Short Introduction to Mathematics by Timothy Gowers
Career links	https://www.mathscareers.org.uk/ Visit the webpage above for links to careers involving Maths and Further Maths.					

