	Half term 1	Half term 2	Half term 3	Half term 4	Half term 5	Half term 6
Key focus	Congruence, similarity and enlargement Trigonometry	Equations and inequalities Angles and bearings	Circles Vectors Ratios and fractions	Percentages and interest Probability	Data Non-calculator methods Types of number and sequences	Indices and roots Manipulating expressions
Key knowledge and skills	- Identify similar and congruent shapes - Find missing lengths or angles in similar and congruent shapes - Surface area and volume of similar 3D shapes - Describe and carry out enlargements of shapes including with negative scale factors - Use trigonometry to find missing lengths and angles in 2D shapes and 3D shapes - Cosine rule - Sine rule - Area of a triangle - Trigonometric graphs - Use Pythagoras' theorem to find missing lengths	- Form and solve equations - Form and solve inequalities - Represent inequalities on a number line - Draw straight line graphs - Draw graphs of inequalities Solve quadratic equations by factorising - Form and solve simultaneous equations - Draw and interpret scale diagrams - Draw, measure and calculate bearings - Use Pythagoras and trigonometry to solve bearings problems - Use sine and cosine rule to solve bearings problems	Area and circumference of a circle - Area and perimeter of a sector - Know and use circle theorems - Work out volume and surface area of a cylinder, cone or sphere - Surface area and volume of similar 3D shapes - Understand vector notation - Add vectors/ apply scalars - Solve geometric problems involving vectors - Understand parallel vectors - Use vectors to construct proofs - Link ratios and fractions - Simplify ratios, including to the form 1:n or $\mathrm{n}: 1$ - Share in a ratio - Currency conversion - Best buy - Ratio in area and volume problems	- Convert between fractions, decimals and percentages - Calculate percentages of amounts, percentage increases and decreases - Express one number as a percentage of another - Simple and compound interest - Reverse percentages - Iterative processes - Work out the probability of an event - Mutually exclusive events - Sample space diagrams - Relative frequency - Probability trees - Conditional probability	- Understand populations, samples and types of data - Construct a stratified sample - Construct and interpret frequency tables, frequency polygons, two-way tables, line charts, bar charts, pie charts, time series graphs, stem and leaf diagrams, scatter graphs, cumulative frequency diagrams, box plots and histograms - Work out averages from a list or table - Use mental and written methods to add, subtract, multiple and divide - Round and estimate calculations - Solve financial maths problems - Convert recurring decimals to fractions - Understand and use surds - Calculate upper and lower bounds - Understand factors, multiples and prime numbers - Express a number as a product of its prime factors - Describe and continue sequences - Find the nth term of a linear or quadratic sequence - Continue sequences involving surds	- Calculate powers and roots - Convert numbers to and from standard form - Calculate with numbers in standard form - Know and use index laws - Work out fractional indices - Simplify algebraic expressions Add, subtract, multiply and divide algebraic fractions - Form and solve equations and inequalities with fractions and algebraic fractions - Use algebraic proof

[^0]| Key words/ vocabulary | Similar, congruent, scale factor, enlarge, trigonometry, sine, cosine, tangent, opposite, adjacent, hypotenuse, Pythagoras | Solve, plot, factorise, simultaneous, intersection, scale, bearings | Radius, diameter, area, perimeter, circumference, sector, volume, surface area, cone, sphere, cylinder, vector, resultant, parallel, simplify, share | Fractions, decimals, percentages, compound, simple, interest, probability, mutually exclusive, independent, relative frequency, conditional | Population, sample, primary data, secondary data, stratified, frequency, cumulative frequency, frequency density, mean, median, mode, range, rational, irrational, bounds, factors, multiple, prime numbers, linear, geometric, quadratic | Square numbers, cube numbers, roots, standard form, simplify, prove |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Assessment method | Topic tests Exit tickets | Topic tests Exit tickets Assessment point 1 | Topic tests Exit tickets | Topic tests Exit tickets | Topic tests Exit tickets | Topic tests
 Exit tickets
 Assessment point 2 |
| Wider links | Congruent shapes and enlargements may be used in art | Bearings used in geography Solving equations will be used in science | Volume may be needed in science with mass and density calculations | Percentages may be used in science | Several parts of the data topic will overlap with areas of science/ geography | Standard form will be used for large/ small numbers in science |
| Enrichment opportunities | www.nrich.maths.org, STEM outreach team at the University of Leeds, Bletchley Park, Bank of England Museum, The Royal Observatory' LEGOLAND | | | | | |
| Careers links | Pythagoras and trigonometry used in construction Jewellers and interior designers may work with congruent shapes to make patterns | Air traffic controllers use simultaneous equations to make sure two planes won't collide
 Simultaneous equations are useful when working with loans or investments Air traffic controllers, automotive designers and surveyors, among others, work with angles
 Pilots use bearings when navigating | Engineers need to be able to calculate volume
 Painters calculate surface area to see how much paint they need Chemists use surface area to work out how quickly a substance will react A dentist uses surface area to determine the size of dental restorations | Those who work in finance work with interest Economists and meteorologists work with probability Video game designers work with probability Engineers work with vectors | Statisticians collect and analyse data | Scientists regularly work with very small objects and will use standard form for this |

[^0]: "Perseverance produces character, and character, hope" (Romans 5:4)

