Formulae for GCSE – Higher tier

Percentages	
Compound interest / Growth and Decay	$\left(1 \pm \frac{\%}{100}\right)^n \times original$
Original amount (reverse percentage)	$\frac{new\ amount}{(1\pm\frac{\%}{100})}$
Percentage change (percentage increase or decrease)	$\frac{difference}{original} \times 100$
Percentage score	$\frac{score}{total \ available} \times 100$

Angles in Polygons	
Sum of interior angles	180(n-2)
of a polygon	100(11-2)
Relationship between	
interior and exterior	$interior + exterior = 180^{\circ}$
angles of a polygon	
Exterior angle of a polygon	$\frac{360^{\circ}}{n}$
Number of sides of a polygon	360° exterior angle

Pythagoras and Trigonometry	
Pythagoras' theorem: find the hypotenuse	$c = \sqrt{a^2 + b^2}$
Pythagoras' theorem: find a non-hypotenuse	$a = \sqrt{c^2 - b^2}$
Trigonometry: Mnemonic to help choose the correct ratio	O A O S H C H T A
Trigonometry: Sine ratio	$Sin \ \theta = \frac{opp}{hyp}$ $\theta = sin^{-l} \left(\frac{opp}{hyp} \right)$
Trigonometry: Cosine ratio	$Cos \ \theta = \frac{adj}{hyp}$ $\theta = cos^{-l} \left(\frac{adj}{hyp} \right)$
Trigonometry: Tangent ratio	$Tan \ \theta = \frac{opp}{adj} \qquad \theta = tan^{-l} \left(\frac{opp}{adj}\right)$
Cosine rule: find a side	$a^2 = b^2 + c^2 - 2bcCosA$
Cosine rule: find an angle	$CosA = \frac{b^2 + c^2 - a^2}{2bc}$
Sine rule: find a side	$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$
Sine rule: find an angle	$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$
Area of a triangle (trigonometry)	$A = \frac{1}{2}abSinC$

Statistics	
The angle for 1 person or thing	$\frac{360^{\circ}}{\sum frequency}$
Position of the median value	$ \frac{\text{Odd}}{\frac{n+1}{2}} \qquad \frac{\text{Even}}{\frac{n}{2}, \frac{n}{2} + 1} $
Frequency density (histogram)	frequency class width
Interquartile range	upper quartile - lower quartile UQ-LQ

Compound Measures	
Speed	$\frac{distance}{time} \qquad \begin{array}{c} d \\ \hline \textbf{S} \\ \hline \end{array}$
Pressure	force area p a
Density	wolume D v

Rules of Indices	
Multiplying	$a^m \times a^n = a^{m+n}$
Dividing	$\frac{a^m}{a^n} = a^{m-n}$
Raising to another power	$(a^m)^n = a^{mn}$
Anything to the power of zero	$n^0 = 1$
Negative index	$a^{-m} = \frac{1}{a^m}$
Unit fractional index	$a^{\frac{1}{n}} = \sqrt[n]{a}$
Any fractional index	$a^{\frac{m}{n}} = (\sqrt[n]{a})^m$

	Sequences
Nth term: Linear (arithmetic)	$U_n = dn + (a-d)$ $a = first \ term$ $d = difference$
sequence	
Nth term: Geometric	$U_n = ar^{n-1}$ $a = first term$ $r = common ratio$
sequence	r = common ratio

Unit Conversion	
Converting between lengths: cm and m	÷ 100
Converting between areas: cm ² and m ²	÷ 10000 cm² m² × 10000
Converting between volumes: cm ³ and m ³	÷ 1000000 cm³ m³

Equations and Graphs	
Equation of a straight line	y = mx + c
Gradient	$\frac{diff. \ in \ y}{diff. \ in \ x} \qquad \sum_{x} y$
Midpoint of a line (between 2 points)	$\left(\frac{x_1+x_2}{2} , \frac{y_1+y_2}{2}\right)$
Equation of a circle	$x^2 + y^2 = r^2$
Quadratic formula	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

How to learn the formulae

You need to know all of these formulae for your maths exams. To learn them effectively try these ideas:

- 1. Look, Cover, Write, Check, Correct
 - a. Look at the formulae then cover it
 - b. Try to say or write the formulae
 - c. Check to see if you were tight
 - d. Correct those you get wrong
- 2. Get someone else to test you
- 3. Flashcards
 - a. Write the name on one side and the formula on the other
 - b. Go through the cards looking at one side and trying to remember the other

Electronic flashcards of the formulae are at:

mathsduck.co.uk/formulae

Remember:

- You will learn the formulae best by testing yourself
- Little and often is better than fewer longer sessions

	Area and Volume
Area of a square/rectangle	A = bh
Area of a triangle	$A = \frac{bh}{2}$
Area of a parallelogram	A = bh
Area of a trapezium	$A = \frac{1}{2}(a+b)h$
Circumference of a circle	$C = \pi D$ or $C = 2\pi r$
Area of a circle	$Area = \pi r^2$
Surface area of a cylinder	$2\pi r^2 + \pi dh$
Surface area of a sphere	$4\pi r^2$
Surface area of a cone	$\pi r^2 + \pi r l$
Surface area of a frustum	$\pi r^2 + \pi R^2 + \pi (R+r)l$
Volume of a cube/cuboid	V = bhl
Volume of a triangular prism	$V = \frac{bh}{2}l$
Volume of a cylinder	$V = \pi r^2 h$
Volume of a pyramid	$V = \frac{1}{3}(base \ area \times height)$
Volume of a cone	$V = \frac{1}{3}(\pi r^2 h)$
Volume of a sphere	$V = \frac{4}{3}(\pi r^3)$
Arc length	$\frac{\theta}{360} \times \pi d$
Sector area	$\frac{\theta}{360} \times \pi r^2$
Area of a segment	area of sector - area of triangle
Enlarged perimeter	original perimeter × S.F
Enlarged area	original area \times (S.F) ²
Enlarged volume	original volume $\times (S.F.)^3$