Percentages	
Compound interest $/$ Growth and Decay	$\left(1 \pm \frac{\%}{100}\right)^{n} \times$ original
Original amount (reverse percentage)	$\frac{\text { new amount }}{\left(1 \pm \frac{\%}{100}\right)}$
Percentage change (percentage increase or decrease)	$\frac{\text { difference }}{\text { original }} \times 100$
Percentage score	$\frac{\text { score }}{\text { total available }} \times 100$

Statistics	
The angle for 1 person or thing	$\frac{360^{\circ}}{\sum \text { frequency }}$
Position of the median value	$\frac{\text { Odd }}{\mathrm{n}+1} \quad \frac{\mathrm{nven}}{2}, \frac{\mathrm{n}}{2}+1$
Frequency density (histogram)	$\frac{\text { frequency }}{\text { class width }}$
Interquartile range	upper quartile - lower quartile
UQ-LQ	

Angles in Polygons	
Sum of interior angles of a polygon	$180(n-2)$
Relationship between interior and exterior angles of a polygon	interior + exterior $=180^{\circ}$
Exterior angle of a polygon	$\frac{360^{\circ}}{n}$
Number of sides of a polygon	$\frac{360^{\circ}}{\text { exterior angle }}$

Pythagoras and Trigonometry	
Pythagoras' theorem: find the hypotenuse	$c=\sqrt{a^{2}+b^{2}}$
Pythagoras' theorem: find a non-hypotenuse	$a=\sqrt{c^{2}-b^{2}}$
Trigonometry: Mnemonic to help choose the correct ratio	$S^{0} H \quad C^{A} H \quad T^{0} A$
Trigonometry: Sine ratio	$\operatorname{Sin} \theta=\frac{o p p}{\text { hyp }} \quad \theta=\sin ^{-1}\left(\frac{o p p}{h y p}\right)$
Trigonometry: Cosine ratio	$\operatorname{Cos} \theta=\frac{a d j}{\text { hyp }} \quad \theta=\cos ^{-1}\left(\frac{\text { adj }}{\text { hyp }}\right)$
Trigonometry: Tangent ratio	$\operatorname{Tan} \theta=\frac{o p p}{a d j} \quad \theta=\tan ^{-1}\left(\frac{o p p}{a d j}\right)$
Cosine rule: find a side	$a^{2}=b^{2}+c^{2}-2 b c \operatorname{Cos} A$
Cosine rule: find an angle	$\operatorname{Cos} A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$
Sine rule: find a side	$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Sine rule: find an angle	$\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$
Area of a triangle (trigonometry)	$A=\frac{1}{2} a b \operatorname{Sin} C$

Compound Measures		
Speed	$\frac{\text { distance }}{\text { time }}$	d
Pressure	t	
Density	$\frac{\text { force }}{\text { area }}$	P
	P	a

Rules of Indices	
Multiplying	$a^{m} \times a^{n}=a^{m+n}$
Dividing	$a^{m}=a^{m-n}$
Raising to another power	$\left(a^{m}\right)^{n}=a^{m n}$
Anything to the power of zero	$n^{0}=1$
Negative index	$a^{-m}=\frac{n}{a^{m}}$
Unit fractional index	$a^{\frac{1}{n}}=\sqrt[n]{a}$
Any fractional index	$a^{\frac{m}{n}}=(\sqrt[n]{a})^{m}$

Sequences		
Nth term: Linear (arithmetic) sequence	$U_{n}=d n+(a-d) \quad$$a=$ first term $d=$ difference	
Nth term: Geometric sequence	$U_{n}=a r^{n-1} \quad$$a=$ first term $r=$ common ratio	

Unit Conversion	
Converting between lengths: cm and m	
Converting between areas: cm^{2} and m^{2}	
Converting between volumes: cm^{3} and m^{3}	

Equations and Graphs	
Equation of a straight line	$y=m x+c$
Gradient	$\frac{\text { diff. in } y}{\text { diff. in } x}$
Midpoint of a line (between 2 points)	$\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
Equation of a circle	$x^{2}+y^{2}=r^{2}$
Quadratic formula	$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

How to learn the formulae

You need to know all of these formulae for your maths exams. To learn them effectively try these ideas:

1. Look, Cover, Write, Check, Correct
a. Look at the formulae then cover it
b. Try to say or write the formulae
c. Check to see if you were tight
d. Correct those you get wrong
2. Get someone else to test you
3. Flashcards
a. Write the name on one side and the formula on the other
b. Go through the cards looking at one side and trying to remember the other

Electronic flashcards of the formulae are at:
mathsduck.co.uk/formulae

Area and Volume	
Area of a square/rectangle	$A=b h$
Area of a triangle	$A=\frac{b h}{2}$
Area of a parallelogram	$A=b h$
Area of a trapezium	$A=\frac{1}{2}(a+b) h$
Circumference of a circle	$C=\pi D$ or $C=2 \pi r$
Area of a circle	Area $=\pi r^{2}$
Surface area of a cylinder	$2 \pi r^{2}+\pi d h$
Surface area of a sphere	$4 \pi r^{2}$
Surface area of a cone	$\pi r^{2}+\pi r l$
Surface area of a frustum	$\pi r^{2}+\pi R^{2}+\pi(R+r) l$
Volume of a cube/cuboid	$V=b h l$
Volume of a triangular prism	$V=\frac{b h}{2} l$
Volume of a cylinder	$V=\pi r^{2} h$
Volume of a pyramid	$V=\frac{1}{3}($ base area \times height $)$
Volume of a cone	$V=\frac{1}{3}\left(\pi r^{2} h\right)$
Volume of a sphere	$V=\frac{4}{3}\left(\pi r^{3}\right)$
Arc length	$\frac{\theta}{360} \times \pi d$
Sector area	$\frac{\theta}{360} \times \pi r^{2}$
Area of a segment	area of sector - area of triangle
Enlarged perimeter	original perimeter \times S.F
Enlarged area	original area $\times(S . F)^{2}$
Enlarged volume	original volume $\times(\text { S.F. })^{3}$

- You will learn the formulae best by testing yourself
- Little and often is better than fewer longer sessions

