Physical components of fitmess (FAMMBS)

Flexibility- activities requiring a wide range of movement around a joint e.g. gymnastics \& dance Aerobic endurance events/sports lasting longer than 30 minutes e.g. marathon, football Muscular strength - activities requiring force e.g. throwing events \& weightlifting
Muscular endurance-
events/sports lasting longer than 30 minutes e.g. rugby \& basketball Body Composition - low body fat e.g. gymnastics, high muscle mass e.g. sprinters

Speed - activities requiring fast movement e.g. sprinting

> Basic Principles of Training Frequency - how often you train Intensity - how hard you train Time - how long to train for $\frac{\text { Type }}{\text { use }}$ - which types of training to

Learning Aim A

Skill Relatiod componemts offiness (IPCRAB)

Power - activities requiring explosive movement e.g. throwing \& jumping

Co-ordination - any activity requiring the movement of two or more body parts e.g. hand, eyes and tennis racquet to hit the tennis ball

Reaction time - an activity where a quick decision or response to a stimulus is needed e.g. a batter reacting to the ball in rounders

Agility - activities requiring quick changes of direction e.g. dodging the opposition in rugby

Balance - any activity requiring the control of the distribution of weight or to remain upright and steady

Additional principles of training (SPARRRIV)

Specificity - training should meet the needs of the sport, or physical/skill-related fitness goals to be developed
Progressive Overload - in order to progress, training needs to be demanding enough to cause the body to adapt, improving performance
Adaptation - changes to the body due to increased training loads Reversibility - if training stops, or the intensity of training is
lowered, fitness gains from training are lost
Rest and recovery - to allow the body to recover and adapt Individual differences/needs training should meet the needs of an individual
Variation - altering types of training to avoid boredom and maintain motivation to train

Borg (6-20) Rating of
 Perceived Exertion (RPE)

Scale

Gives an indication of how hard (exertion) an individual has worked straight away after exercise

RPE $\times 10=H R(b p m)$
e.g. if you think you have worked at 15 on the Borg scale, your HR should be 150bpm

Training Zones

Maxiumum Heart Rate (MHR) = 220-age

Aerobic training zone $=60-85 \%$

MHR

Anaerobic training zone $=85 \%+$

MHR

Be able to calculate training
zones e.g. a 20 -year old will
have an aerobic training zone of
120-170 bpm.
$(220-20=200$.
$200 \times 0.6=120$.
$200 \times 0.85=170$)

