

Curriculum Map – Computer Science- Year 10

“Perseverance produces character, and character, hope” (Romans 5:4)

Half term 1 Half term 2 Half term 3 Half term 4 Half term 5 Half term 6

Key focus • Decomposition and abstraction
• Truth tables
• Python programming

• Binary

• Data representation

• Python programming

• Data storage and compression

• Hardware

• Software

• Python programming

Key knowledge
and skills

• Understand the benefit of using decomposition and
abstraction to model aspects of the real world and
analyse, understand, and solve problems.

• Understand the benefits of using subprograms.
• Understand how to follow and write algorithms.
• Understand the need for and be able to follow and write

algorithms that use variables and constants and one-
and two-dimensional data structures.

• Understand the need for and be able to follow and write
algorithms that use arithmetic operators.

• Understand how to determine the correct output of an
algorithm for a given set of data and use a trace table
to determine what value a variable will hold at a given
point in an algorithm.

• Understand types of errors that can occur in programs
(syntax, logic, runtime) and be able to identify and
correct logic errors in algorithms.

• Understand how to be able to apply logical operators
(AND, OR, NOT) in truth tables with up to three inputs
to solve problems.

• Understand how standard algorithms (bubble sort,
merge sort, linear search, binary search) work.

• Develop understanding of python programming
constructs, setting data types, and inputting different
user inputs

• Understand that computers use binary to represent
data (numbers, text, sounds, graphics) and program
instructions and be able to determine the maximum
number of states that can be represented by a binary
pattern of a given length.

• Understand how computers represent and manipulate
unsigned integers and two’s complement signed
integers.

• Understand how to convert between denary and 8-bit
binary numbers (0 to 255 and –128 to +127).

• Understand how to add together two positive binary
patterns and apply logical and arithmetic binary
shifts.

• Understand how to add together two positive binary
patterns and apply logical and arithmetic binary
shifts.

• Understand why hexadecimal notation is used and be
able to convert between hexadecimal and binary.

• Understand how computers encode characters using
7- bit ASCII.

• Understand how bitmap images are represented in
binary (pixels, resolution, colour depth).

• Understand how analogue sound is represented in
binary (amplitude, sample rate, bit depth, sample
interval).

• Understand the limitations of binary representation of
data when constrained by the number of available
bits.

• Understand how to solve problems using python
programming language.

•

• Understand that data storage is measured in binary
multiples (bit, nibble, byte, kibibyte, mebibyte,
gibibyte, tebibyte) and be able to construct
expressions to calculate file sizes and data capacity
requirements.

• Understand the need for data compression and
methods of compressing data (lossless, lossy).

• Understand the von Neumann stored program
concept and the role of main memory (RAM), CPU
(control unit, arithmetic logic unit, registers), clock,
address bus, data bus, control bus in the fetch
decode-execute cycle.

• Understand the role of secondary storage and the
ways in which data is stored on devices.

• Understand the concept of an embedded system and
what embedded systems are used for.

• Understand the purpose and functionality of an
operating system.

• Understand the purpose and functionality of utility
software.

• Understand the importance of developing robust
software and methods of identifying vulnerabilities.

• Creating programs that use functions and procedures,
include validation and other forms of error detection

Key words/
vocabulary

Computation thinking / divide and conquer / ‘Big O’
notations / algorithms / Logic gates / trace tables /
Pseudocode / flow diagrams / Intergrade development
environment

Binary / base 2, base 10, base 16 / Two’s complement /
Binary sign / character sets

High level language / low level language / Von Neumann
/ CPU registers / scheduling / memory management /
buffer /

Assessment
method

Question and answering / practice exam questions / homework / topic assessments / Mock exams

Curriculum Map – Computer Science- Year 10

“Perseverance produces character, and character, hope” (Romans 5:4)

Wider links Mathematics

Enrichment
opportunities

Code breakers

Careers links

Programmer / Ethical hacker / Software engineer / Networking consultant / Computer scientist

